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The random sweeping decorrelation hypothesis was analysed theoretically and 
experimentally in terms of the higher-order velocity structure functions DLy)(r) = 
( [uy(x+ r )  -u7(x)lZ). Measurements in two high Reynolds number laboratory shear 
flows were used : in the return channel (Rh x 3.2 x lo3) and in the mixing layer (aA x 
2.0 x lo3) of a large wind tunnel. Two velocity components (in the direction of the 
mean flow, ul, and in the direction of the mean shear, uz) were processed for m = 1 4 .  
The effect of using Taylor's hypothesis was estimated by a specially developed 
method, and found to be insignificant. It was found that all the higher-order 
structure functions scale, in the inertial subrange, as $. Such a scaling has been 
argued as supporting evidence for the sweeping hypothesis. However, our 
experiments also established a strong correlation between energy- and inertial-range 
excitation. This finding leads to the conclusion that the sweeping decorrelation 
hypothesis cannot be exactly valid. 

The hypothesis of statistical independence of large- and small-scale excitation was 
directly checked with conditionally averaged moments of the velocity difference 
( [u( (z+r)  - U ~ ( X ) ] ~ ) , ~ ,  I = 24, at a fixed value of the large-scale parameter ut .  Clear 
dependence of the conditionally averaged moments on the level of averaging was 
found. In  spite of a strong correlation between the energy-containing and the 
inertial-scale excitation, universality of the intrinsic structure of the inertial 
subrange was shown. 

1. Introduction 
The random sweeping decorrelation hypothesis was first investigated by Tennekes 

(1975) who assumed that the small-scale eddies (with scales at least one order of 
magnitude less than those of energy-containing eddies) are advected past the 
Eulerian observer by the energy-containing eddies without dynamical distortion. 
Tennekes showed that if large-scale advection gives the dominant contribution to 
kinetic energy in the inertial subrange, the Eulerian frequency spectra of any 
velocity component square u: may be described as 

c;pCj(f) = p,, E:(u;}f-g, ( 1 )  

where put is an unknown constant, f is a frequency, E is a mean energy dissipation rate. 
Hereafter u, (i = 1,2,3) denote velocity fluctuation components, i.e. (ui) = 0, and 
J @L*;(f) df = (4) .  



494 A .  A .  Praskovsky, E. B. Gledzer, M .  Yu. Karyalcin and Ye Zhou 

The same problem was studied by Van Atta & Wyngaard (1975) who analysed one 
of the earliest attempts, by Dutton & Deaven (1972), to extend Kolmogorov’s 
(1941 a,  b )  scaling to the higher-order spectra. Van Atta & Wyngaard assumed 
Gaussian statistics for velocity components ui and found that, for the inertial 
subrange, 

where k=2nf/U1 is a wavenumber, U, is a mean longitudinal velocity, and 
JEc)(k) dk = (u:~>. Now according to the Kolmogorov (1941 a, b )  and Oboukhov 
(1941) theory, the energy spectrum scales as 

EZ)(k)  = n2 x 3 x 5 x . . . (2n- 3)(~:)~-lEt:(k), n 2 2, (2) 

E(’)(k) - k 4 ,  
so that (2) shows that 

EZ’(k) - k-:, (3) 

i.e. the higher-order spectra in the inertial subrange have the same power-law 
exponents as that of the energy spectrum. This result was strongly supported with 
experimental data by Van Atta & Wyngaard (1975) for n < 9. 

The interest in high-order moments of the velocity field (especially the fourth- 
order one) was renewed recently in connection with renormalization group (RNG) 
results by Yakhot, Orszag & She (1989) who obtained 

Ekf)(k) - k 4 ,  (4) 

i.e. the spectra of both kinetic energy and pressure fluctuations scale as lc-: in the 
inertial subrange. This conclusion can be also obtained from a straightforward 
extension of Kolmogorov’s dimensional analysis to higher-order spectra, if the mean 
dissipation rate E is assumed as the only governing parameter. 

The question was further examined by Nelkin & Tabor (1990). They showed that 
the random sweeping is dominant if the kinetic energy spectrum scales as k-g in the 
inertial subrange. On the other hand, if the kinetic energy spectrum scales as (4), i.e. 
has the same exponent as the pressure-fluctuation spectrum, the RNG prediction of 
no sweeping is recovered. Based on Van Atta & Wyngaard’s (1975) experimental 
results, Nelkin & Tabor concluded that the random sweeping hypothesis is valid at 
high Reynolds numbers. 

Chen & Kraichnan (1989) clearly showed that the RNG approach discards 
sweeping effects at the outset and so does not prove the unimportance of sweeping. 
The main conclusion of Chen & Kraichnan is that a ‘precise coherence between 
energy-range and inertial-range excitation is needed to inhibit sweeping effects ’. This 
conclusion has important implications for the theory of fully developed turbulence. 

To clarify this statement let us first cite an explanation from Chen & Kraichnan 
(1989). ‘The Kolmogorov (1941) theory appeals to effective statistical independence 
of the one-time probability distributions of energy-range and inertial-range 
excitation: at any instant, the two ranges know about each other only through 6. 
Tennekes (1975) has pointed out that this implies a statistical form of Taylor’s 
hypothesis so that inertial-range components of velocity field suffer advective 
sweeping by the energy-range excitation. Consequently, the many-time distribution 
of the inertial-range excitation involves the magnitude of the sweeping as well as E .  ’ 
A major contradiction can be seen from the citation. Indeed, Kolmogorov’s theory 
is directly applicable only to the velocity differences (or to the appropriate energy 
spectra) because the characteristic time of these quantities is essentially smaller than 
that of a large-scale motion. Since Kolmogorov’s hypotheses cannot be simply 
extended to more complex quantities (e.g. the higher-order spectra) which may be 
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governed by other timescales, special generalization of the theory is necessary for a 
given complex case. As an example, Kraichnan (1965) generalized the Kolmogorov 
theory for hydromagnetic turbulence. The sweeping decorrelation hypothesis not 
only relies on the Kolmogorov (1941 a, b )  theory but also implies some generalization. 
An additional large-scale governing parameter (ut ) is added to the inertial-range 
description. If the hypothesis is valid, this modification is correct for the particular 
case of the higher-order spectra and, perhaps, may be further extended. On the other 
hand, the RNG result of Yakhot et al. (1989), (4), reduces the theory to the original 
form, that is the same as the straightforward extension of the Kolmogorov theory. 

The above considerations are our motivation to revisit issues related to the 
random sweeping hypothesis. The highest possible Reynolds number laboratory 
measurements were used for analysis. We have investigated not only the 
consequences of the different approaches, (1)-(4), but also the basis of the hypothesis, 
i.e. the assumption of statistical independence of energy-range and inertial-range 
excitation. This general idea was converted to two different ‘measurable ’ forms. The 
analysis was accomplished in terms of structure functions instead of the more usual 
spectral approach. As will be seen later, the structure function approach allowed us 
to examine this complicated question step by step. 

2. The higher-order velocity structure functions 
The term ‘higher-order structure functions’ is used hereafter in the same way that 

the term ‘higher-order spectra’ was used by Van Atta & Wyngaard (1975), i.e. it 
denotes the quantities : 

DLT)(r) = ( [ U ~ ( X ~ + ~ ) - U ~ ( X ~ ) ] ~ ) ,  i = 1,2,3,  m 2 1, ( 5 )  
where ut denote velocity component fluctuations ( (u0  = 0 ) ,  zt are coordinates, 
subscript 1 hereafter corresponds to the direction of a mean flow, and r is a distance, 
within the inertial subrange, in the x1 direction. 

Let us define ui(xl) = u, ui(xl + r )  -u&) = Au andDLy)(r) = D,. Equation (5 )  can 
be represented in the form 

D, = <{[u + A u ] ~  -urn}’) 
= ( [mum-l Au ++(m - 1 )  ~ ~ - ~ A u ~ + + ( m  - 1) (m - 2) um+Au3 + . . .I2). (6) 

From (6) it  follows that 

D, = m2(u2m-2Aua) +m2(m- 1)  

+ m2(m - 1 )  +j(7m- 11) ( U ’ ~ - ~ A U ~ )  + . . . . (7) 
(8) In  particular, D, = 4<u2AuZ) + 4<uAu9) -k ( Au4). 

Equation (7) contains the terms (ukAul) with k > 1 and 1 2 2 .  As will be seen later, 
analysis of these terms gives a better understanding of the sweeping decorrelation 
hypothesis and allows us to find the direct one-time large- and small-scale eddy 
interaction (if any). Two methods will be used. 

In the first method, the correlation coefficients between u and Au are introduced 
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The sweeping hypothesis is based on the assumption of statistical independence of 
large- and small-scale motion. For this assumption to be valid, it  is necessary that 
the large-scale characteristics uk and the inertial-scale ones Au‘ be completely 
uncorrelated, i.e. 

p k , l  = O  for all k 2  1, I2 2. (11) 

(ukAul)  = (u”) ( A d )  for all k 2 1, 1 > 2. (12) 

From (10) and (11) follows: 

It will be shown later that (12) leads directly to the sweeping decorrelation relations 
(1)-(3). The advantage of this approach is that the condition (11) may be easily 
checked experimentally because the value of p k , l  can be measured from its 
definition, (9). 

The second method is a direct check of large- and small-eddy interaction. In 
accordance with the definition 

(ukAul) = ukAulP(u,Au) dudAu s 
= suk [[Au~P(Au I u)  dAu U ~ ( A U ~ ) ~  P(u)  du ,  (13) 

where P(u,  Au) is a joint probability function of u and Au; P(Au I u)  is a conditional 
probability function of Au a t  fixed value of u ;  and ( A d ) ,  are the 1-order moments 
of velocity difference Au conditionally averaged a t  fixed value of u. Here the relation 
P(u, Au) = P(Au 1 u)  P(u)  is used. 

If the large, energy-containing fluctuations, characterized by u, and the small, 
inertial-range ones, characterized by Au, are statistically independent, the P(Au I u )  = 
P(Au) and 

Equation (14) is one of the possible mathematical (and ‘ measurable ’ !) formulations 
of the assumption of statistical independence of large- and small-scale motion. It 
leads directly to (12). 

Thus, (12) may be derived via two different methods. The first one is the 
assumption of complete statistical independence between energy-containing and 
inertial-range excitation. This assumption can be expressed in a ‘measurable ’ form, 
(14). The second assumption is that excitations in the large and small scales are 
uncorrelated. The appropriate ‘measurable ’ expressions are (9) and (1 1). 

Let us adopt the assumption that : velocity and velocity difference Jluctuations are 
uncorrelated. As a result, (11) and, consequently, (12) are valid. Using (12), the exact 
expansion (7)  becomes 

(Aul),  = ( A d )  for all 12 2. (14) 

D, = m2(u2m-2) (Au2)  +m2(m- 1) (uzrnp3) (Au3)  

+ m2(m - 1) &7m - 11) (uZme4) (Au4)  + . . . . 
It can be rewritten as 

(Au3)  
(uZm-’) (Au2)  

D, = m2(u2m-2) (Au2)  

+. . . I ,  m 2 2 .  (15) 
7m - 11 ( u ~ ~ - ~ )  <Au4) 

12 ( uZrnp2) ( Au2) 
+(m-1)- 
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To estimate the terms in the square brackets (15), the Kolmogorov (1941a, b)  
theory may be adopted. In  this case 

( A d )  = C , ( C ~ ) ~ / ~ ,  (16) 

where C, are the constants. In particular, C, = C is the well-known Kolmogorov 
constant. Let us denote 

It is obvious that + + 2  if r +  co and ++O if r+O. Using (16) and (17), (15) may be 
written as 

D ,  = m Z < ~ 2 m - 2 ) ( A ~ 2 )  l+(m-l)--@ K2m-3 ‘3 

K2m-2 4 
7m - 11 Kzrnp4 C, 

+(m-l)------- c2$+...], m 2 2 .  (18) 
12 K2m-2 2 

To estimate $(r) ,  the local isotropy relation 

E = 1 5 4 3 )  

may be used (Y is kinematic viscosity). The Taylor microscale and appropriate 
Reynolds number are defined as 

and from (16), (17), (19) and (20) it follows that 

+( r )  =C2 (:$ -- . 

It is well known from numerous measurements that in high Reynolds number free 
shear flows the large-scale characteristics are of the order of IK,l < 0.5, IK61 < 3, 
K4 2 3, K, 3 15. The inertial-range constants are approximately C, w 2 ,  G, = -0.8, 
C, w 25 so the factor C,(l5); in (21) is about 12. The ratio r / A  usually does not 
exceed 10 in the inertial subrange. It is seen from (21) that the value of 9 is small for 
sufficiently large values of R, and small r .  So all terms with #(r )  in the square 
brackets in (18) can be omitted if fine-scale turbulence (with small r )  at sufficiently 
high Reynolds number R, is analysed. In  this case (18) reduces to 

Dhy)(r) = m2(u:m-2) ([~~(x+r)-u~(z)]~), i = 1,2 ,3 ,  m z 2. (22 1 

~ L y ) ( r )  - r;, i = I ,  2,3,  m 2 2. (23) 

From (22) and (16), one finds 

It is necessary to emphasize that the above estimate is valid for (15) but may be 
inapplicable to the exact equation (7) if the assumption (11) is violated. 

Equations (22) and (23) express the sweeping decorrelation hypothesis in terms of 
high-order structure functions. Indeed, the Fourier transformation of (23) coincides 
with (3). Moreover, if a Gaussian distribution for ui is assumed, the Fourier 
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transformation of (22) reproduces (2), proposed by Van Atta & Wyngaard (1975). 
The structure function approach has two advantages over the spectral one. First, the 
derivation of the final equation (22) is thoroughly clear and all assumptions, i.e. (ll),  
the hypothesis of statistical independence of large- and small-scale eddies, (14), etc., 
are completely transparent. Second, all of these assumptions may be directly 
measured and checked. These detailed measurements were the purpose of the 
experimental investigation presented below. 

3. Apparatus and measurement techniques 
Two velocity time series in high Reynolds number laboratory shear flows were 

analysed. The first one was obtained in the large wind tunnel of the Central 
Aerohydrodynamic Institute (Moscow), The mixing layer between a jet issuing from 
an elliptical nozzle (14 x 24 mz) and ambient air was studied. The wind tunnel had an 
open 24 m long working section. Measurements were performed on the line, which 
continued the nozzle wall, at a distance x1 = 20 m downstream of the nozzle. The free 
jet velocity was equal to U, = 11.8 m/s. 

The second time series was obtained in the return channel of the same wind tunnel. 
The channel was 175 m long and 22 m wide. I ts  height rose linearly from 20 m to 32 m. 
Measurements were done in the plane of symmetry from a tower 5 m above floor 
level. Flow velocity at  the measuring station was 10.8 m/s. 

Standard thermoanemometers were used. An X-wire probe with perpendicular 
wires was operated at  an overheat ratio of 0.8. Wires were made of platinum-plated 
tungsten. The length of each wire was 0.5 mm, its diameter was 2.5 pm. The distance 
between wires was 0.5 mm. 

Signals from both wires were filtered to reduce noise level, digitized and processed 
on a computer. The low-pass filter cutoff frequency was f, = 1.7 kHz. The sampling 
frequency f, and one-channel time series length N were 8 kHz and 2000000 samples 
respectively. These values were chosen to investigate the inertial subrange. To 
measure the energy dissipation rate e, f c ,  f, and N were doubled. 

Descriptions of the experiments and analysis of measurement errors (temporal and 
spatial resolution, statistical convergence, nonlinearity of the hot-wire response etc.) 
can be found in Karyakin, Kuznetsov & Praskovsky (1991) (and a detailed version 
in English : Kuznetsov, Praskovsky & Karyakin 1992). 

The main flow characteristics at  the measurement points are listed in table 1.  Two 
velocity fluctuation components were analysed at  every point : in the direction of the 
mean flow (subscript 1) and in the direction of the mean shear (subscript 2). The 
mean energy dissipation rate E was estimated using the local isotropy relation (19). 
The local isotropy hypothesis was used only for presentation of the results and did 
not influence the conclusions. Taylor’s hypothesis was used to convert the temporal 
into the spatial coordinate. The influence of Taylor’s hypothesis will be discussed in 
the next section. The integral lengthscale L and the Kolmogorov scale 7 were 
estimated with standard formulae : 

L=ms, u1 co(u,(t+7)u,(t))d7, 7 = (v3/e)f.  

where t is a time and r is a time delay. 
It is seen from table 1 that at  Reynolds numbers R, up to 3.2 x lo3, which were 

achieved in the laboratory measurements, the energy-viscous eddy separation, i.e. 
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Return Mixing 
Flow channel layer 

u, (m/s) 10.8 7.87 
Q(ul) (m/s) 1.03 1.67 

qu:,/<4> 1.52 1.35 
qu;)/<4> 3.61 3.08 
~(,:)/<u:> 7.59 6.74 
U@*) (m/4 0.828 1.27 
q,:,/<%> 1.58 1.39 
%:)/(4) 3.98 3.36 
qu:,/<4> 8.21 7.42 

A (-1 46 18 

L (4 4.8 1.3 

LIT x 10-3 12 6.2 

u(ul)/ul x 100% 9.54 21.2 

e (mz/s3) 0.11 1.9 

R, x 10-3 3.2 2.0 

T (mm) 0.41 0.21 

TABLE 1.  Main turbulence characteristics at analysed points. 

the ratio Llr], exceeded 6000 which was big enough for the existence of a substantial 
inertial subrange. 

4. Results 
4.1. Measurements of the higher-order structure functions 

The measured higher-order structure functions are presented in Figure I (in all plots 
solid and open symbols correspond to the u1 and u2 velocity components 
respectively). The quantities D(")(r)  are normalized with 6 in accordance with (23). 
First, it  is necessary to determine the inertial subrange bounds. The well-known 
determination 7 4 r 4 L is not really precise so the choice is always somewhat 
arbitrary. It is seen in figure 1 that the interval 207 < r < 4L may be treated as the 
inertial one in both flows. To exclude any doubts, it  is assumed that the distance r 
belongs t o  the inertial subrange if 307 < r < &. Vertical arrows in all plots 
correspond to the latter bounds. It is seen in figure I that the choice is quite 
reasonable. At least, the 'two-thirds law' is valid within these bounds with high 
accuracy. 

It is worthwhile to explain here the chosen form of data presentation. In  fact, all 
results from the two flows studied are qualitatively similar. So either series of plots, 
(a) or ( b ) ,  may be sufficient to illustrate the results obtained. However, we believe 
that it is beneficial to present the data for both flows: these data are unique owing 
to their high (laboratory) Reynolds numbers as well as the high data reliability; also 
the experimental results may be useful to other workers in studies of other 
turbulence problems. 

It is seen from figure 1 that measured values of DLT)(r) are in agreement with (23) 
for both velocity components. This agrees with previous measurements of higher- 
order spectra by Dutton & Deaven (1972) and Van Atta & Wyngaard (1975). 
However, it is somewhat premature to draw any conclusion at  this stage. Yakhot 
et al. (1989) pointed out that the use of Taylor's hypothesis may contaminate 
experimental results. Let us try to analyse this important objection. 

"t. 



A t  the moment a direct test of this question is impossible because only one-point 
measurements of small-scale fluctuations at high Reynolds numbers are available, so 
we devised an indirect approach. The sweeping hypothesis was expressed in two 
different measurable forms which will be assumed to be affected by the use of 
Taylor's hypothesis (if it all) in different ways. Any difference in the results is 
expected to be a test of the effect. 

Equation (22) can be rewritten in the form 

These non-dimensional ratios include similarly constructed velocity differences both 
in the numerator and denominator, so the influence of Taylor's hypothesis on the 
values of dL! ) ( r )  must be weaker than on Diy)(r ) .  However, this influence (if any) 
may be different at different m because of independent averaging in the numerator 
and denominator. 

The second test was based on the quantities 

These quantities include velocity differences both in the numerator and denominator 
at the same locations (or instances). Thus the influence of Taylor hypothesis on the 
values of gLy)(r) may be expected to be either negligible or at least quite different 
from that on the d?$)(r). With a derivation completely similar to that of (24), one can 
easily obtain 

Equation (26) cannot be directly connected with the spectral expressions (1)-(3). 
Nevertheless, it  is another form of the sweeping hypothesis because it is based on the 
same assumptions and derived in the same way. Experimental data are presented in 



figures 2 and 3. Linear scales for the ordinate were chosen to underline departures 
from unity in (24) and (26). In both cases the distance r was estimated as r = rU1. It is 
seen that the variations of d L y ) ( ~ )  and gLy)(r) over the inertial subrange are 
approximately of the same magnitude. It means that the error due to using Taylor's 
hypothesis is negligibly small in this case. For further analysis of such an influence, 
an additional experiment was carried out. The two-point distances r in (25) were 
estimated as (see Heskestad 1965) 

- 
r = 7Ul(7), (27) 

where -rl was a variable parameter and the local large-scale velocity U1(7J at the 
instant t j  was calculated as 

Results presented in figure 3 correspond to r1 = T, where T is the whole duration of 
the time series. The value of rZ was changed from 0.3L/UI up to 3L/U1 and no 
dependence of gL:)(r) on rz was found. The results for m = 4, where the dependence 
on rz was found to be the most significant one, are presented in figure 4. Thus it can 
be concluded from figures 2-4 that the influence of Taylor's hypothesis on the 
investigated parameters can be neglected both in the mixing layer, where the 
turbulence intensity was over 21 %, and in the return channel where it was less than 
10%. 

It is seen in figures 2 and 3 that within the inertial subrange for both velocity 
components the departures of dLT)(r) and gLT)(r) from unity are sufficiently small for 
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0.4 1 t 
10 102 103 10 10' 103 

'17 r h  
FIGURE 4. The influence of the averaging interval T~ on the values of gT!(y) : (a) return channel; 

(6) mixing layer. 0, r1 = T ;  A, LIU,;  A, 0.3L/d1. 

FIGURE 5. Correlation coefficients pzm-z.z(r). For symbols see figure 1. 

m = 2. These discrepancies increase with m and the values of d.f:(r) and gg)(r)  vary 
by a factor of about two over the inertial subrange. Nevertheless, it appears that the 
data agree with (23), at least qualitatively, and confirm the sweeping decorrelation 
hypothesis because the variation of the parameters gLy)(r) and dLy)(r) could be 
considered as small (see figure 1 ) .  But an alarming observation can be seen in figures 
2 and 3. Indeed, it can be easily found from (15 )  and (24) that if the assumption (1 1 )  
is even approximately valid, the quantity dF:(r) cannot decrease as the distance r 
increases. This result is valid for gg)(r)  even more rigorously. The tendency obtained 
in figures 2 and 3 may be attributed either to measurement errors or to some more 
deep physical reasons. As it will be shown in the next subsection, the latter 
alternative is the correct one. The fact is that the basic assumption (1  1 )  is not valid 
in the flows studied. 

4.2. Correlation of energy- and inertial-range excitation 
The first right-hand-side terms in (15 )  are connected with correlation coefficients 
p2m-2,2(r )  in (9 ) .  The measured values of these coefficients are presented in figure 5 .  
Two features are seen there. First, ~ ~ , , - ~ , ~ ( r )  decreases with decrease of r ,  as expected. 
Second, these values are surprisingly large throughout the whole inertial subrange. 
Indeed, p2m-2,2 x 0.04-0.08 for r / y  = 30. To illustrate the significance of the 
correlations obtained, let us return to (10 ) .  It can be rewritten as 



So the real influence of correlation coefficients depends on the ratios of r.m.s. values 
to average ones for moments both of velocities and of the inertial-subrange velocity 
differences. The latter values characterize the variability of energy at different T 

through the cascade and are interesting in themselves. The measured values of 
c(Aas)/(Aua) are presented in figure 6. The ratios g(Usm-z ) / (u2m-2  ) are listed in 
table 1.  It is seen that multipliers for p2m-2,2 in (29) are of the order of 10 for r / v  = 
30 so the second term on the right-hand side is comparable with unity and therefore 
a significant one. The results clearly show that the sweeping decorrelation hypothesis 
cannot be exactly valid even a t  very high (up to R, = 3.2 x lo3) but finite Reynolds 
numbers. 

On the other hand, two contradictions seem to be present in our results reported 
above. The first one is that the measured higher-order structure functions are in 
agreement with the hypothesis (figures 1-3). The second one was mentioned above 
and concerns the behaviour of the quantity dE)(r ) .  Because coefficient p2,% is 
significant and positive, dg:(r) must be an increasing function of T .  To resolve these 
seeming contradictions, it is necessary to realize that derivation of the final equation 
(22) was based on two assumptions. The first one was formalized by (11) as a 
decorrelation of energy-range and inertial-range excitation. But this assumption 
leads only to (15). The second assumption was a consequence of the first but may be 
treated as an additional independent assumption. It was used when the right-hand- 
side terms in (15) were neglected. As was emphasized in $2, the estimation may be 
invalid for exact (7) if the assumption (11) is violated. 

To demonstrate this point, we write the exact equation (8) as 

D2(r)  = 4(u2Au2) [1 + 6,(r) + l f2(r)] ,  (30) 

6, = ( u A u ~ > / ( u ~ A u ~ ) ,  6, = ( A u ~ ) / ~ ( u ~ A u ~ ) .  

As was shown in $2, 6, = 0 and 8, 4 1 if (11) is valid. The measured values of 6, and 
8, are presented in figure 7. It is seen that the negative quantity 6, becomes dominant 
with increasing r and overcomes the increase of 6,. This is additional evidence of 
interaction between large- and small-scale motions. Thus there is no intrinsic 
contradiction in the results presented, i.e. they are self-consistent. 

We have encountered a surprising situation here. The experimental results, figures 
1-3, are in agreement with theoretical predictions, (1)-(3) and (22)-(26), which follow 
from the sweeping decorrelation hypothesis. Such agreement is usually treated as a 
confirmation of a hypothesis. But a direct check of the assumption (1 l), which is the 
basis of the hypothesis, has shown that this agreement is a mere coincidence. The 
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r lL  r l L  

FIGURE 7. Non-dimensional right-hand-side terms in (30) : (a) return channel; 
( b ) ,  mixing layer. 0,  i$; A, S,. 

violation of this assumption leads to some self-compensating consequences. Let us 
illustrate this with (8) for m = 2: the quality D, = 4(u2Au2) becomes invalid, but 
another consequence of assumption (11 ) :  6, = 0 and 6, 4 1,  becomes invalid too. 
Because they act in opposite directions, the final result looks like a confirmation of 
the hypo thesis. 

4.3. Direct large- and small-scale eddy interaction 
As was pointed in $2, the non-zero correlations (9) directly lead to the violation of 
the hypothesis (14) on the statistical independence of large- and fine-scale 
fluctuations. This hypothesis is the basis of the recent theory of locally isotropic 
turbulence at high Reynolds numbers. Detailed analysis of the hypothesis can be 
found in the book by Batchelor (1953). The Kolmogorov (1941a, b, 1962) theory 
relies on this hypothesis too. The validity of (14) in the limit of r + 0 was confirmed 
by Kuznetsov, Praskovsky & Sabelnikov (1992) where the equality ( (au , /~x , )" ) ,  = 

<(au,/ax,)2z) was experimentally verified within turbulent fluid for 1 = 1,2,3. But 
the results presented above show that the hypothesis seems to be invalid in the 
inertial subrange. This question should be re-examined. 

To calculate the moments of velocity differences, conditionally averaged over the 
fixed value of velocity u,*, the following procedure was used. The values 
[u , ( t+97)-uJ t -#~)]~  were averaged over the instants t j  when u:-@u, < ui(t j)  < 
u,*+#~,. The velocity interval was equal to 6u, M O.laUt. Then Taylor's hypothesis 
r = TU, was used to estimate the separation r .  

The ratios < A u f ) , ~ / ( A u ~ )  for I = 2-4 were measured. In accordance with (l4),  these 
values have to be equal to unity for all levels u,* and orders I if large- and small-scale 
motions are statistically independent. For 1 = 3 the modulus of the velocity 
difference was calculated. It is obvious that (14) is valid both for Au and for IAul if 
the hypothesis analysed is valid. There were two reasons to use absolute values for 
third-order moment calculations. The first, well-known, one was that the statistical 
convergence of (lAu13) is essentially better than of (Au3) .  The second reason was the 
following physical considerations. The quantity <Au3) is connected with the mean 
energy dissipation rate (Kolmogorov 1941 6 )  by 

<A+ = -&. (31) 

The quantity IAu13/r determines the instantaneous energy flux through eddies with 
characteristic scale r within the inertial subrange (Kolmogorov 1962, see also 
Kraichnan 1974). As will be seen in $5, it is a more important quantity for our 
purpose. 
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of the velocity. (a) Return channel: 0,  r / v  = 33; 0, 115; 0, 390; A, 1300; (b) mixing layer: 
0 ,  r / v  = 37; 0, 110; 0,  320; A, 940. 

The results obtained are presented in figures 8-10. Data scatter inevitably 
increases for the rare events at  large uf ,  so results are given only for lufl/crui < 3. 
Within these bounds, the number of independent samples for conditional averaging 
was not less than 1500 for any value of u:. Nevertheless the data scatter is large 
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enough especially for I = 4. In spite of the scatter, two main characteristic features 
are seen in these plots. The first one is strong dependence of the inertial-subrange 
fluctuations on large-scale parameters, in agreement with the measurements of 
correlations pzrn.+, presented above. Moreover, the magnitude of the interaction 
depends weakly on r within the inertial subrange. The second feature is that this 
dependence is just qualitatively different in different flows and for different velocity 
components (compare a and b in figures 8-10). 

To check the reliability of the results, two additional experiments were performed. 
The first onet was directed to estimate the influence of Taylor’s hypothesis. The 
numerical algorithm described above was modified in the following way (it was done 
for the u1 component only). After the instant for conditional averaging ti was fixed, 
i.e. the condition uf -+Su, d ul(tj) < ua ++8ul was recognized, the local sweeping 
velocity U,(T~) was calculated from (28). Then the two-point separation was 
estimated from (27). The value of rl was changed from 0.3L/Ul up to 3L/Ul and no 
dependence of (Au?),; on rl was found. 

The second experiment was directed to clarify whether the instantaneous value of 
u, is really a representative characteristic of large-scale motion. To check this 
question, another kind of - conditional averaging was done. The quantities <AIL;)= 
were calculated, where ul(rl)  was equal to the second term in the right-hand side of 
(28). The averaging interval was changed in the same range 0.3L/Ul G 7l G 3L/U, 
and no dependence of (Au;)u1(71) on r1 was found. 

So it seems that the results presented in figures 5 and 8-10 reliably prove the 
existence of significant direct large- and inertial-scale eddy interaction. This 
interaction was established in two different types of high Reynolds number 
laboratory shear flows with R, x 2.0 x lo3 and 3.2 x lo3. The results show that some 
revision of the recent models of small-scale turbulence at high Reynolds numbers is 
desirable. 

5.  Discussion 
Almost all recent models of fine-scale turbulence structure in high Reynolds 

number flows are based on the hypotheses proposed by Kolmogorov (1941 a, b ,  1962) 
and Oboukhov (1941, 1962). These hypotheses about locally homogeneous and 
isotropic turbulence significantly simplify the description of high Reynolds number 
turbulence and so they are very attractive and widely accepted. However, sometimes 
the Kolmogorov-Oboukhov results and even consequences from their hypothesis 
obtained by others are extended to cases for which they are inapplicable. The issue 
related to the sweeping decorrelation hypothesis is an example. Nelkin & Tabor 
(1990) wrote (p. 81):  ‘With this hypothesis of random sweeping, the power laws for 
the spectrum are still universal, but the 1941 Kolmogorov assumption breaks down 
since the velocity u, which is a property of the nonuniversal large scales, enters the 
result ’. Indeed, it breaks down because Kolmogorov’s hypotheses were extended to 
a case where they are inapplicable. Moreover, the result about direct interaction of 
large- and small-scale eddies, presented in the previous subsection, which appears as 
direct evidence against the hypotheses, does not really contradict them. 

To clarify this matter, let us extract two main features of both (1941 and 1962) 
hypotheses. The first one is that they are based on a cascade mechanism of energy 
transfer and so they are valid only asymptotically, i.e. for RA+ CO. As was pointed 

t Proposed by Dr R. Rogallo. 
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out by Karyakin et al. (1991), the number of steps N in such a cascade cannot be very 
big even in the highest Reynolds number flows physically possible since N N log,L/r. 
So at finite Reynolds numbers the hypotheses may be treated only as a first 
approximation and some deviations are possible. The second and most important 
feature is that the hypotheses are valid only for the ‘locally averagable’ values. This 
idea is clearly explained by Kolmogorov (1962). The small-scale turbulence knows 
about the energy-containing range only through the energy flux E ( X ,  t )  N IAu13/r, but 
not through the mean rate of energy dissipation e (see remarks by Kraichnan 1974). 
The quantity E(X, t )  is determined by the instantaneous energy flux from large-scale 
eddies E,(x,  t ) ,  which may be roughly estimated as 

This relation has been reliably proved in numerous semi-empirical models. For very 
high Reynolds numbers and in a state of dynamical equilibrium between large- and 
small-scale motions, the average value of energy flux E was assumed by Kolmogorov 
to be equal to the average value of energy dissipation. But averaging here is 
accomplished over regions with sizes of order of (or smaller than) the integral scale, 
and over times of order of (or smaller than) the interval of time correlation. Only in 
this case may the large-scale influence on fine-scale structure be assumed to be quasi- 
homogeneous and quasi-stationary so that the dynamical equilibrium can be 
achieved. So both the hypotheses and their consequences may be applied only to 
quantities for which such an averaging may be done. Velocity differences Aui are an 
example of such quantities and all Kolmogorov’s results were obtained for Au: only. 
The ‘ two-thirds law’ and (31) have been well verified by numerous experiments. 

Let us come back to the results presented in figures 8-10. They become natural and 
expected if Kolmogorov’s considerations above are really taken seriously. Indeed, 
the instantaneous energy flux from large-scale eddies to small-scale ones depends on 
lu13/lL, equation (32). If local dynamical equilibrium between the flux from energy- 
containing eddies and viscous dissipation in the smallest eddies is achieved, the 
instantaneous flux through the inertial subrange eddies with scale r ,  proportional to 
JAuI3/r, must depend on E,(x, t ) .  To check this dependence quantitatively, IuI3 and 
IAuI3 have to be measured, i.e. simultaneous records of all three velocity components 
are necessary. In our experiments only two components were recorded simultane- 
ously so surrogate quantities, (14), were measured and only qualitative results 
were obtained. It is obvious that the large-scale quantity ui is connected with E,, and 
the inertial-quantity IAu,l is connected with E .  The dependence of ( A U ~ ) , ~  on u6 
obtained reflects the variability of the energy flux through the cascade in accordance 
with the variability of this flux due to inhomogeneity of large-scale motion. It is 
natural that this dependence is different in different flows and for different velocity 
components owing to different relations between 1111 and ui and 1Au) and A U ~ .  Thus the 
type of direct interaction between large- and small-scale eddies we have found does 
not contradict the Kolmogorov’s basic hypotheses. 

Moreover, the results allow some further generalization of the classical hypotheses. 
To clarify it, the non-dimensional quantities 

are presented in figures 11 and 12 respectively. It is obvious that for 7 4 r 4 L these 
17-2 
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FIGURE 11. Non-dimensional second-order moments of velocity differences, conditionally 
averaged at  a fixed value of the velocity. For symbols see figure 8. 
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FIGURE 12. Non-dimensional fourth-order moments of velocity differences, conditionally 
averaged at a fixed value of the velocity. For symbols see figure 8. 
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FIGURE 13. Non-dimensional second-order moments a,(u:), averaged over the range 

- 3 < u:/uxi < 3 : 0, return channel ; A, mixing layer. 

quantities characterize the intrinsic behaviour of the inertial subrange fluctuations 
at  a fixed value of the energy flux from large-scale eddies. In spite of significant data 
scatter, it seems that the intrinsic structure of the inertial range does not depend on 
the value of ua. To estimate the possible dependence of ccl on u:, r ,  type of flow etc., 
let us introduce the quantities and raL = [ ( c c L - Z l J 2 ] ~  averaging over the range 
-3  d u!/aul d 3 (denoted by the overbar). As before this limited range is used 
simply to reduce scatter due to inadequate sampling times in our experiment, and is 
not a physically significant limitation. The value of may be treated here as an 
error of the assumption a,($) = const. Measured values of & for I = 2 , 4  are 
presented in figures 13 and 14. The error bars in these figures correspond to the values 
of *aal. It is seen that to a first approximation the inertial-subrange intrinsic 
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structure depends weakly only on separation r and not on flow type, direction of ui, 
or Reynolds number. 

Returning to the sweeping decorrelation hypothesis. The first right-hand-side term 
in the exact equation (7),  ( u ~ ~ - ~ A u ~ ) ,  includes the direct interaction of large- and 
small-scale quantities. In contrast to (Au"), it  is not 'averagable' in the sense used 
above, i.e. over the regions smaller than the integral scale, and so it may depend on 
Uzm-2 even in the inertial subrange. It appears that there is no real contradiction with 
Kolmogorov hypotheses if the higher-order spectra or structure functions in the 
inertial subrange depend on the large-scale parameters. The dependence reflects the 
spatial and temporal variability of the energy flux through the cascade, in full 
agreement with Kolmogorov's ideas. The only reason why this hypothesis cannot be 
exactly valid is the strong correlation described above between energy-containing 
and inertial-range excitation (see the conclusion by Chen & Kraichnan 1989). But 
even in this case the main result, (3) or (23), which follows from the hypothesis, is in 
acceptable agreement with experiments. 

6.  Summary 
The validity of Tennekes's (1975) random sweeping hypothesis is one of the 

unresolved questions of high Reynolds number turbulence theory. The hypothesis is 
based on the assumption of complete decorrelation of energy- and inertial-range 
excitation. The latter assumption is itself extremely important because it is (either 
directly or indirectly) used in almost all recent models of fine-scale turbulence 
structure. The main consequence of the sweeping hypothesis, that the higher-order 
spectra E(") of velocity powers uy,  m Z 2 ,  scale in the inertial subrange as k-i, was 
strongly confirmed experimentally by Van Atta  & Wyngaard (1975). But both the 
hypothesis and its confirmation were challenged by Yakhot et al. (1989). Using the 
RNG methods, they obtained the scaling - k-3 for the spectrum u2 in the inertial 
subrange. In their paper an experimental result - k-i was attributed to the effect 
of Taylor's hypothesis. 

We have attempted to analyse again the random sweeping hypothesis, and some 
relevant questions, both theoretically and experimentally. Theoretical analysis 
was accomplished in terms of the higher-order structure functions D ; ~ ) ( T )  = 
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([up(x+ r )  - up(x) lz) .  It was shown that the structure function analysis has two 
important advantages over the s ectral one. The first advantage is that the 
derivation of the scaling Drn) - rs is thoroughly clear and all assumptions are 
completely transparent. The second one is that assumptions, in particular the 
assumption about the statistical independence of large- and small-scale excitation, 
can be converted to ‘measurable’ form. 

To verify the formulae obtained experimentally, measurements in two high 
Reynolds number laboratory shear flows were used: in the return channel (RA x 
3.2 x lo3) and in the mixing layer (Rh  m 2.0 x lo3) of the large wind-tunnel at  the 
Central Aerohydrodynamic Institute (Moscow). Two velocity components (in the 
direction of the mean flow and in the direction of the mean shear) were processed. 
The extent of a clearly established inertial subrange, taken as 307 < r < g, was 
about two decades in all flows. The higher-order structure functions were measured 
for m = 14 .  Special methods were devised to estimate the influence of Taylor’s 
hypothesis. It was found that this influence on the parameters studied is negligible. 

Experiments have shown that higher-order structure functions scale in the inertial 
subrange as rg in agreement with the random hypothesis. However, strong correlation 
between large-scale parameters ut, k = 2,4,6, and small-scale ones Au:(r) for any 
distance r within the inertial subrange was established. Thus the sweeping 
decorrelation hypothesis cannot be exactly valid, in spite of the scaling prediction 
agreeing with experiments. It was found the large-small scale correlation has two 
relevant consequences : it violates the sweeping relation (22 )  and all right-hand-side 
terms in the exact equation (7)  become significant. Both these consequences 
contradict the sweeping hypothesis but they act in opposite directions and the final 
result becomes close to the hypothesis’s prediction. 

The assumption about statistical independence of large- and small-scale excitation 
was checked with conditionally averaged moments of velocity difference (Au:).;, 
I = 2 4 ,  at fixed value of the large-scale parameter u:. Clear dependence of the 
conditionally averaged moments on the level of averaging u: was found. It was 
shown that this dependence does not really contradict Kolmogorov’s hypotheses and 
it reflects the spatial and temporal variability of the energy flux through a cascade. 
In spite of a strong correlation between the energy-containing and the small-scale 
excitation, the intrinsic structure of the inertial subrange was found to be universal, 
i.e. it depends weakly on separation r but not on the flow type, direction of ui, or 
Reynolds number. 
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